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Abstract— Nowadays lithium-ion batteries are the standard
power source for electric transportation applications. Lithium-
ion batteries are subject to aging and matching the battery
life with the vehicle life is still one of the unresolved challenges
limiting the large-scale spreading of electric vehicles. This paper
explores the possibility of controlling in closed-loop the aging
of the battery: the idea is to control the maximum current
requested to the battery and to schedule the charging events
in order to mitigate the battery degradation. Limiting the use
of the battery means compromising with vehicle performance
in terms of maximum accelerations, driving range and charge
time. The control objective can be therefore defined in mini-
mizing the battery aging and, at the same time, guarantying
satisfactory vehicle performance. In the paper the control
problem is formally defined in an optimization framework and
an optimal benchmark is obtained for future online battery
management strategies.

I. INTRODUCTION

Tightening emissions regulations and increasing govern-
mental incentives programs are motivating car manufacturer
efforts in research and development of clean powertrain
solutions such as Hybrid and Fully Electric Vehicles (FEV).
The biggest limits to FEVs large-scale spreading are the
limited driving range, relatively slow recharge time and
high cost compared to traditional fuel based vehicles. The
high cost is mostly influenced by the battery pack and its
replacement during the lifetime of the vehicle: an unresolved
challenge is to match the life time of the battery with the life
of the vehicle. Lithium-ion batteries are the most common
type of batteries for transportation applications due to their
exceptional high energy density but, as all other battery
chemistries, they are subject to aging. Many different and
complex aging mechanisms can be identified in the battery
during its lifetime span but macroscopic effects of battery
aging are the loss of total storage capacity and the increase
of the internal resistance, see [1]. in general battery aging can
be divided in two main categories: calendar aging and cycle
aging. Calendar aging is associated to the energy storage and
it occurs even if the vehicle is not utilized. On the other hand,
cycle aging is related to battery utilization (battery charge
and discharge) and it strongly depends on how the battery
is used. Due to the complexities of the electrochemical
phenomena involved in the aging process, most of the studies
regarding battery cycle aging are empirical studies [2]–[5].
In these works, battery cells are continuously cycled under
different conditions and semi-empirical models are derived
from the collected data relating battery loss of capacity to
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various stress factors like temperature, voltage, SOC and
current. It is well established that temperature, Depth of
Discharge (DOD), and C-rate are the main stress factors for
Lithium-ion batteries. This means that cycling a cell at high
C-rate, high temperature and at high DOD makes the cell
degrade faster. There are some attempts in controlling the
battery aging in Hybrid vehicles: in [6] and [7] the power
split between the internal combustion engine (ICE) and the
electric motor is decided not only with the objective of
minimizing the fuel consumption but battery aging is also
taken into account. In this framewotk, the ICE is run in
situations where the battery ages faster like high temperature
and extreme SOC scenarios. There are some fully electric
hybrid configurations where the battery is used jointly to
a super capacitor (SC). This solution can be effective to
mitigate battery aging since the SC can be used to reduce
the battery peak current. The control of such hybrid systems
is presented in [8] and in [9]. Up to now, this promising
hybrid solution consisting of a battery ad a SC is not as cost
effective as over sizing the battery therefore it is rarely used
in current FEV.

In this paper, the idea of controlling in closed-loop the
capacity loss of a FEV battery is explored. Given that a
measure of the reaming battery capacity is available, two
control actions can be identified in this sense: 1) setting the
maximum admissible current Imax that can be drawn from
the battery in order to dampen the current peaks 2) limit
extreme battery DOD, acting on the vehicle charging man-
agement. Ideally, one would like to minimize the capacity
degradation but this objective is in contrast with some desired
performance of the vehicle in terms of accelerations, driving
range and charge time. Therefore, the control objective can
be defined as controlling the capacity degradation during the
vehicle use and, at the same time, guaranteeing acceptable
vehicle performance. One contribution of this paper consists
in the development of control-oriented FEV model that can
be used to understand and quantify the trade-off existing
between limiting the battery usage in terms of maximum
current Imax and DOD and the vehicle performance. The
battery thermal management is also included in the model.
Furthermore, an offline optimization procedure of the control
variables is carried out to get some insights of the afore-
mentioned trade-off and to set-up an optimal benchmark for
future implementation of online control strategies.

The paper is organized as follows: in Section II the FEV
model is derived: it consists of the longitudinal vehicle
dynamics model, battery model, including its aging sub-
model, and the cooling system model. Section III shows
simulation results exemplifying the effect of the control



variables. In Section IV, an optimization procedure is used
to visualize the Pareto-front describing the aforementioned
trade-off.

II. MODELING

The objective of this section is to derive a complete
vehicle model able to quantify the effect of different driving
situations on battery aging. More specifically, the model
should be able to provide some insights on the existing
trade-off between an optimal usage of the battery (from
the point of view of maximizing its lifetime) and some
performance indexes such as driving range, charging time
and accelerations performance that will be formally defined
later on in Section IV. Because of the great amount of data
published in literature, the vehicle chosen as a reference is a
Nissan Leaf. Relevant data of the vehicle are taken from [10].
The high-level scheme of the developed model is depicted
in Figure 1. Three main sub-models can be identified: the
vehicle model describing the longitudinal dynamics and
the powertrain of the vehicle, the battery cell model that
describes the capacity loss of the battery cell depending on
the driving conditions and the thermal management module
that calculates the power requested to cool down the battery.
In the following the three sub-models are described in details.

A. Electric Vehicle model

Fig. 1. Scheme of the developed fully electric vehicle model.

The majority of the works regarding powertrain sizing
and energy management utilize a backward-facing approach
to model the vehicle. In backward approaches, the desired
speed is imposed to the vehicle and the motor speed, torque
and power are calculated backwards. Differently from this
classical approach, the model developed in this work is
characterized by a mixed forward-backward facing approach
as highlited in Figure 1. The forward-facing part consists
in the modeling of the driver’s response to a desired speed
reference and in the modeling of the longitudinal dynamics
of the vehicle. The backward-facing part, based on the power
requested to run the vehicle, computes in a backward manner
the power that is drawn from the battery. Such an approach
turned out to be necessary in the framework used in this
paper since the basic assumption that the vehicle is able to
meet the speed profile of the driving cycle does not hold. The
reader is referred to [11] for more details on forward-facing
and backward-facing vehicle simulations.

The model of the driver is a simple PI regulator that
requests a certain torque to the electric motor based on
the speed error e = vre f − v. Knowing the motor torque
constant kt , The motor current can be directly derived from
the torque as ireq = τreq/kt . The requested motor current is
then saturated to a maximum value Imax that, is considered
as a control variable to limit the battery current at the cost
of limiting also the vehicle acceleration. The motor current
is then used to calculate vehicle speed according to the
longitudinal vehicle dynamic equation:

Mv̇ = imotsat

KtKg

Rw
− 1

2
ρv2CDA−Froll (1)

where Kg is the gear ratio, Rw is the wheel radius, Froll is
the rolling resistance, CD and A are the drag force coefficient
and the cross sectional area respectively.

The power that the electric motor has to provide can be
calculated from torque and speed:

Pmot =
Kt imotsat v

RwKg
. (2)

In a backward facing approach, the motor is modeled as
a simple efficiency map depending on torque and speed,
therefore the power requested to the battery to perform the
driving cycle can be calculated dividing the motor power by
the motor efficiency:

PbattDC =
Pmot

ηmot(Kt imotsat ,ωmot)
. (3)

The power requested to the battery needs to be scaled
down to the single cell based on the number of cells present
in the battery pack. The battery cell considered in this work is
a commercial A123 cylindrical LiFePO4 cell characterized
by a nominal voltage of 3.3 V and a nominal capacity of
2.5 Ah. This particular cell has been chosen as reference
because it is very well studied in literature, nethertheless the
modelling approach used here is general and, if accordingly
parametrized, can be applied to any other Li-ion cell. In order
to match the voltage and total energy of the Nissan Leaf
battery pack, 2910 A123 cylindrical cells need to be used.
The cell power is calculate as PcellDC = PbattDC/ncell where
ncell is the total number of cells. The DOD of the battery
is controlled through the charging management module:
when the control schedule a charging event, the charging
management block modifies the driving cycle in order to
stop the vehicle and perform the charging of the battery.

B. Battery cell model

Inputs to the cell model are the requested power to
the cell Pcell and the operating temperature T . The cell is
modeled using an electrical equivalent circuit characterized
by a voltage source VOC and its internal resistance R. The
open circuit voltage depends on the state of charge through
the well known OCV curve, while the internal resistance is
a function of the aging of the battery and of the operating
temperature. The parameters of the equivalent circuit are



taken from [12]. With a simple power balance the cell current
can be obtained as a function of the requested power:

I =
VOC−

√
V 2

OC−4RPcell

2R
. (4)

The State of Charge SOC is computed as the integral of
the current flowing into the cell normalized by the actual
capacity of the cell Q that, as already mentioned, is aging
dependent.The aging model is inspired by the one experimen-
tally identified in [2] on the same A123 cell described above.
It is formulated here as a nonlinear differential equation
describing the rate of capacity loss with respect to the Ah
processed:

dQ
dAh

=− z
100

αSOC exp
(
−Ea +ηIc

Rg(273.15+T )

)
Ahz−1

dAh
dt

=
1

3600
|IcQnom|

(5)

where the second differential equation simply defines the
Ah throughput as the total amount of current processed by the
cell. According to (5), three main stress factors influence the
battery degradation: cell temperature T , C-Rate Ic defined as
the operating current normalized by the nominal cell capacity
Qnom, and SOC. Regarding the effect of temperatue and C-
Rate, the aging model described here is in line with [2]
and other scentific works (e.g. [4], [3]) according to which,
for the same amount of charge processed, cycling a battery
at high temperature or at high C-Rate makes the internal
aging processes faster leading to a bigger loss of capacity.
Regarding the effect of SOC, the results presented in [2]
showed a very low (almost negligible) effect of the SOC
on aging. This result can be explained by the fact that the
considered range of SOC was limited to 30%−75% that is
the reasonable operating range for a Hybrid electric vehicle
where the supervisory control runs the internal combustion
engine at very low and very high SOC. In the case of FEVs,
it is important to account for the effect of high and low SOC
on battery aging in case the driver wants to exploit the full
capacity of the battery to extend the range of the vehicle.
Previous works such as [5] and [13] showed that substantial
depths of discharge that lead the battery to operate below
20% and above 80 % of SOC affect the battery aging. For
this reason the aging model (5) includes the penalizing factor
αSOC in order to provide a faster aging rate at high and low
state of charge. The coefficient αSOC is defined as follows:

αSOC = (1+ ceb(SOCmin−SOC))(1+ ceb(SOC−SOCmax)) (6)

where c, b, SOCmin and SOCmax are tuning parameters
that can be used to shape the penalization function and
that, in practice, should be identified through ad-hoc aging
experiments. Figure 2 shows the parametrization of αSOC
chosen in this work.

Beside the loss of capacity, battery aging results in an
increase of the internal resistance R. Inspired by the ex-
perimental results published in [14] a linear relationship
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Fig. 2. Chosen parametrization of αSOC used to penalize low and high
SOC.

between resistance increment ∆R and capacity decrement ∆Q
is assumed.

C. Thermal management

As discussed in Section II-B, temperature is an important
factor for battery aging since high temperatures accelerate
the aging process. This fact motivated most of the electric
car makers to include a battery cooling system in their battery
pack design. The model developed here includes the effect of
a cooling system that has the task of keeping the temperature
of the cell to a constant reference value Tre f . The simplified
scheme of the cooling system is represented in Figure 3.

Fig. 3. scheme of the cooling system model.

In a steady state condition, the cooling system has to
remove the heat generated inside the cell plus the convective
heat from the ambient:

Q̇cool = Q̇gen + Q̇conv

Q̇gen = RI2
cell

Q̇conv = (Tamb−Tre f )/Rconv

(7)

where Rconv is the thermal resistance from the cell to the
ambient. The electric power consumed by the cooling system
Pcool depends on the rate of the heat removed divided by the
Coefficient of Performance COP of the cooling system. The
COP depends on the ambient temperature since it becomes
less efficient to remove heat as the external temperature
increases. A reasonable COP function is taken from [15].
The electric power from the cooling system is then summed
to the power requested by the driving cycle. In this manner
the effect of the temperature control of the cell translates
into an additional power load, hence an additional current,
requested to the cell itself.



III. SIMULATION RESULTS

It is difficult to validate a battery aging model on real
vehicle data because an ad hoc experimental campaign is
very costly and time consuming. In order to give a rough idea
of the model validity, the capacity degradation calculated by
the proposed model is compared with some experimental
data published online. Despite the great amount of vehicle
parameters published online for the Nissan Leaf, no clear
experimental analysis has been found regarding its battery
aging. Therefore the capacity loss predicted by the proposed
model has been compared with experimental data publsihed
in [16] for the Tesla Model S. The model is run over a mixed
urban-highway Artemis cycle at a constant temperature of 30
degrees Celsius. Figure 4 shows how the capacity calculated
by the model reproduce reasonably well the capacity loss of
the Tesla battery. This comparison should be intended as a
reasonableness check other than a rigorous model validation.
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Fig. 4. Model capacity degradation simulated over a mixed urban-
highway Artemis cycle compared to Tesla Model S experimental Data.
Figure reproduced from [16].

In the following, some simulations results are presented
to demonstrate the the effect of the control variables Imax
and DOD on battery capacity loss and vehicle performance.
In first approximation, it is possible to relate the maximum
motor current to the maximum allowable cell current through
the following power balance:

Imax =
ImaxcellVcellnomncell

ωmotKt η̄
(8)

where η̄ is an average electric motor efficiency. Therefore,
in the following, the maximum allowable cell current Imaxcell
is considered as a control variable that can be translated in a
maximum motor current through the approximated relation
described by (8). Figure 5 shows the effect of limiting
the maximum current drained from the battery during a
simulation where the electric vehicle performed the US
Federal Test Procedure (FTP cycle) for a total distance of
30000 km.

The result is that, for the same traveled distance, limiting
the maximum current at 0.75 C helps in limiting the loss of
battery capacity: at 30000 km there is a 0.25% of capacity
saved that corresponds to an improvment of 10% with respect
to the nominal case without current limitation. There is a
price to pay in controlling the maximum current: limiting the
maximum current means limiting the maximum acceleration
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Fig. 5. Effect of current limitation on cell capacity, DOD fixed to 60%.

during driving and slows down the charging process. Figure
6 shows the actual speed profile of the vehicle compared
with the FTP reference speed: It is clear how, limiting
the current, the vehicle is not able to follow the reference
during demanding accelerations especially at high speeds.
It is important to remark that the effect of limiting the
maximum current on cell capacity is strictly dependent on
the driving cycle: for the same maximum limit Imaxcell , if the
speed profile is very demanding in terms of accelerations,
the benefit on the capacity will be relevant. In case the speed
profile is so smooth that the current request rarely exceeds
the limit, the effect will be almost negligible.
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Fig. 6. Effect of current limitation on speed reference tracking.

Figure 7 shows the effect of DOD on cell capacity. It can
be seen that reducing the DOD down to 60% can save 1%
of battery capacity in the first 30000 km. The price to pay
in this case is that the range is substantially reduced because
40% of the capacity of the battery is not exploited at all. As
a side effect, the charging time is reduced.

In the considered situation, it can be noted that limiting the
DOD has a more evident effect on battery aging compared
to setting a limit on the maximum current: this fact is a
peculiarity of FEV compared to hybrid vehicles. In hybrid
powertrains, the battery size is much smaller since it does not
have to guarantee a long driving range but the battery is sub-
ject to higher currents in order to power the entire vehicle in
EV mode. Furthermore DOD usually has a small influence in
hybrid vehicles because the supervisory controller never runs
the battery at extreme SOC values. On the other hand FEV
are designed with large battery packs resulting in smaller cell
currents and therefore a smaller current sensitivity on battery
degradation.
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Fig. 7. Effect of DOD on cell capacity with no maximum current limitation.

IV. OPTIMIZATION FRAMEWORK

It is now clear that there are several trade-offs to be taken
into account if we want to manage the battery degradation in
FEV. It is therefore interesting to further analyze the trade-
off in an offline optimization framework. This is also useful
in order to create an optimal benchmark for online control
strategies. To do so, we can define 4 indexes of performance:
Jli f e, Jspeed , Jcharge, Jrange. Considering an optimization hori-
zon [0, tend ], we can define Jli f e as the capacity degradation
over the considered time horizon normalized by the traveled
kilometers:

Jli f e =
Q(0)−Q(tend)

∆km
. (9)

Jspeed is defined as the root mean square value of the speed
difference between the cycle reference and the actual speed
of the vehicle:

Jspeed =

√
1

tend

∫ tend

0
(vre f (τ)− v(τ))2dτ. (10)

This index represents the driveability of the vehicle. Jcharge
and Jrange are the root mean square values of the charge time
and driving range calculated over the charging events in the
considered time horizon:

Jcharge =

√
1
N

N

∑
i=1

t2
charge(i)

Jrange =

√
1
N

N

∑
i=1

range2(i)

(11)

where N is the total number of charging events performed
in the horizon. During the vehicle life, ideally one would
like to minimize the battery aging Jli f e and the charge time
Jcharge, maximize the driving range Jrange and to perfectly
follow the speed reference i.e. minimizing Jspeed . Of course
this objective functions are in contrast with each other and
more specifically, the minimization of Jli f e is in contrast with
the other terms. The multi-objective optimization problem
can be reduced to a single-objective optimization problem
that consists in finding the optimal control variables DOD,
Imaxcell to minimize a weighted summation of the various
terms:

min
DOD,Imax

Jtot

Jtot = αlJli f e +αcJcharge−αrJrange +αsJspeed .
(12)

Depending on the weights αl , αc, αr, αs one can give more
importance to one or more aspects of the problem over the
others. The objective of this preliminary study is to quantify
the trade off between battery aging and the performance of
the vehicle, therefore αc, αr, αs are chosen to make Jspeed ,
Jrange and Jcharge have the same weights in the cost function,
while the optimization has been performed several times
with different values of αl . A total horizon of 30000 km
of the FTP cycle and a control horizon of 3000 km have
been chosen for the optimization. In practice, in each control
horizon, Imaxcell and DOD are found to minimize the overall
cost function (12). A Particle Swarm Optimization (PSO) has
been used to solve the series of optimization problems using
a swarm size of 200 particles. The results of the optimization
for different values of αl are summarized in Figure 8.

Fig. 8. Pareto-front like representation of the battery life vs vehicle
performance.

The first three plots represent the trade-off between Jli f e
and the other performance indexes, the forth plot represents
the mean values of the optimal control variables over the en-
tire horizon. For low-medium values of αl (green and yellow
dots), the optimal control action mainly results in reducing
the DOD with a consequent reduction of the driving range.
For this range of αl , Imaxcell is also reduced from 3C to 2C
causing a slow down of the average charge time. Driveability
is not affected in this range since Jli f e is reduced without
affecting Jspeed : this is due to the fact that the FTP cycle
never demands for long periods of time battery currents over
2C, therefore the accelerations performance of the vehicle are
not modified. As we increase the weight on battery aging (red
dots), the control action results in reducing the maximum



current below 1C and in a consequent deterioration of the
acceleration performance (Jspeed). Furthermore, the optimal
control variables for a value of αl located at the ’elbow’
of the Pareto curve (yellow-orange dots) are computed over
an horizon of 200000 km, a value that usually approaches
the vehicle useful life. The control variables along with the
capacity loss are plotted in the time domain in Figure 9. As
it can be seen, larger control efforts are used in the first 50
thousands kilometers: DOD is limited below 50 % and the
cell current is limited below 2C. After the first 50 thousands
kilometers, the optimal DOD and Imaxcell settle around a
constant value of 50% and 2.5 C respectively. This behavior
is due to the fact that the aging degradation rate is higher for
the first thousands Ah processed by the battery, motivating
a greater control effort in the first thousands kilometers
compared to the rest of the vehicle life. The capacity plot in
Figure 9 shows how the optimal control sequence performs
compared to using constant DOD and Imax over the entire
vehicle life. A very limited DOD and Imax (es: 40% and 1.5
C respectively) produces the highest remaining capacity but
strongly limit the range and the other vehicle performance
for the whole vehicle life span. More relaxed constraints on
DOD and Imax (es: 50% and 2.5 C respectively) allows better
performance but results in a higher capacity degradation. The
optimal control sequence stands in the middle: it limits the
battery stress in the first part of the vehicle life and then
reduces the control effort after 50000 kilometers.

Fig. 9. Time history of the optimal control variables Imaxcell and DOD.

V. CONCLUSIONS
In this paper, the problem of controlling in closed-loop the

battery aging of a FEV has been defined. An ad-hoc electric
vehicle model has been developed for this specific purpose.
Furthermore, the existing trade-off between limiting battery

usage in order to mitigate its degradation and vehicle perfor-
mances has been explored in an optimization framework. The
offline optimization framework gives us a benchmark that
poses the basis for future implementations of online aging
management strategies. The result presented here are relative
to a specific driving cycle (FTP), future work will also focus
on analyzing the sensitivity of the optimal control solution
to different driving cycles.
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